Formation of oxide phases in the system Fe_2O_3 --Gd₂O₃

S. MUSIĆ, V. ILAKOVAC, M. RISTIĆ

Rudjer Bošković Institute, PO Box 1016, 41001 Zagreb, Croatia, Yugoslavia

S. POPOVIĆ

Physics Department, Faculty of Science, PO Box 162, 41001 Zagreb, Croatia, Yugoslavia

The formation of oxide phases in the system (1 - x) Fe₂O₃ + xGd₂O₃ was investigated for $0 \le x \le 1$. On the basis of XRD measurements the distribution of oxide phases, α -Fe₂O₃, Gd₃Fe₅O₁₂, GdFeO₃ and Gd₂O₃ was determined, as a function of x. No solid solutions were observed with certainty even at the very ends of the concentration range. This was also confirmed by ⁵⁷Fe Mössbauer spectroscopy. New accurate crystallographic data for Gd₃Fe₅O₁₂ are given. The formation of oxide phases in the system Fe₂O₃–Gd₂O₃ is compared with the data for analogous system Fe₂O₃–Eu₂O₃.

1. Introduction

In the last decade significant attention has been paid to the chemistry and physics of mixed oxides. These materials have already found applications in a great variety of technical fields. Generally, they exhibit specific electrical, magnetic, magneto-optical, piezoelectric and other physical properties. Mixed oxides can be prepared, for example, using coprecipitation, sol-gel procedure, solid state reactions, ceramic sintering, and film growth on different substrates. In our previous papers [1–4] we observed the relationships between the preparation of mixed oxides and the nature of metal cations on one hand and the chemical and structural properties of these oxides on the other hand.

The oxide system $Fe_2O_3-R_2O_3$, where R is yttrium or a rare-earth element, has been studied from different standpoints. Mössbauer spectroscopy is a particularly useful technique for the characterization of these oxide systems.

The orthoferrites, RFeO₃, where R is yttrium or a rare-earth element, belong to the group of materials which exhibit weak ferromagnetism. A detailed Mössbauer studies on the rare-earth orthoferrites appeared in the 1960s [5–9]. ⁵⁷Fe Mössbauer spectra of rare-earth orthoferrites, RFeO₃, show hyperfine magnetic splitting (one sextet of lines). The hyperfine magnetic field, extrapolated to 0 K, decreases regularly with the atomic number of R from 564 kOe (1 Oe = 79.58 Am⁻¹) for LaFeO₃ to 545.5 kOe for LuFeO₃, and this effect can be ascribed to the changes of ionic radius of the rare-earth cation. The Néel temperature also decreases from 740 K for LaFeO₃ to 623 K for LuFeO₃.

Yttrium and lanthanide garnets represent compounds of a significant practical importance. For instance, yttrium iron garnet (YIG) ceramics have found applications in microwave techniques. Sztanisláv *et al.*

0022–2461 (C) 1992 Chapman & Hall

[10] investigated the formation and structural properties of YIG.

Eibshütz and Lines [11-13] measured the ⁵⁷Fe Mössbauer spectrum of amorphous α -YIG at 4.2 K. The second-order quadrupole shift, the sign distribution of electric field gradient (EFG) and the linewidth asymmetry of the hyperfine magnetic splitting spectrum at 4.2 K were discussed.

Nine garnets, $R_3Fe_5O_{12}$, R = Y, Sm, Eu, Gd, Tb, Dy, Ho, Er or Tm, were investigated by Mössbauer spectroscopy at 590 K [14]. Regular changes of the quadrupole splitting value dependent on the radius of R^{3+} were found for *a* and *d* sublattices. The observed changes were ascribed to the increase of local lattice distortions with decreasing radius of the R^{3+} cation. The absolute Mössbauer absorption fractions for rare-earth garnets were calculated.

Mössbauer spectroscopy and magnetic measurements were applied in the study of Al-substituted YIG [15]. The formation of different oxide phases, such as α -Fe₂O₃, YFeO₃ and Y₃Fe₅O₁₂ was observed during the preparation of YIG. Mössbauer spectra allowed a quantitative determination of incorporated Al³⁺ ions in the garnet structure. The values of the Curie temperature obtained by Mössbauer spectroscopy and magnetic measurements were in good agreement.

Substituted YIG or rare-earth garnets were also studied by other researchers [16–20] using Mössbauer spectroscopy as an experimental technique.

Rare-earth garnets play an important role in the development of magneto-optical devices [21, 22]. The magneto-optical phenomenon, also known as the Faraday effect, occurs when linearly polarized light is transmitted through a magnetic medium, and as a result of this process, the plane of polarization may rotate or become elliptical in dependence on the direction of magnetization. $Y_3Fe_5O_{12}$ garnet is generally used in long-distance optical communications at

wavelengths from 1.3 to 1.6 μ m. Bi-substituted rareearth garnets, Bi_xR_{3-x}Fe₅O₁₂, where R is a rare-earth element, are more promising materials for magnetooptical applications, due to a better ratio between the Faraday rotation coefficient, $\theta_{\rm F}$, for the wavelength of the light applied, and the absorption loss, α .

The aim of the present investigation is to obtain information about the phase composition and structural properties of different oxides formed in the system Fe_2O_3 -Gd₂O₃. The correlation between this oxide system and the system Fe_2O_3 -Eu₂O₃ is elaborated.

2. Experimental procedure

AR chemicals and bidistilled water were used for the preparation of the samples. The hydroxides, $Fe(OH)_3/Gd(OH)_3$, were coprecipitated by adding NH₄OH to corresponding $Fe(NO_3)_3 + Gd(NO_3)_3$ solutions. The coprecipitates were carefully washed and then dried. Samples S₀ to S₁₂ were obtained by heating the corresponding hydroxides (coprecipitates) for 1 h at 200 °C, for 1 h at 300 °C, for 1 h at 500 °C, for 1 h at 500 °C, for 1 h at 600 °C and for 4 h at 900 °C ("step-by-step" heating). The chemical composition of samples S₀ to S₁₂, prepared in the system (1 - x) Fe₂O₃ + x Gd₂O₃, is given in Table I.

X-ray diffraction powder patterns were taken at room temperature using a counter diffractometer with monochromatized CuK_{α} radiation (Philips diffracto-

TABLE I Chemical composition of the samples in the system (1 - x) Fe₂O₃ + xGd₂O₃

Sample	Molar fraction		
So	Fe ₂ O ₃		
S ₁	$0.99 \text{ Fe}_2 \text{O}_3 + 0.01 \text{ Gd}_2 \text{O}_3$		
S ₂	$0.97 \text{ Fe}_2\text{O}_3 + 0.03 \text{ Gd}_2\text{O}_3$		
S ₃	$0.95 \text{ Fe}_2 \text{O}_3 + 0.05 \text{ Gd}_2 \text{O}_3$		
S ₄	$0.90 \text{ Fe}_2\text{O}_3 + 0.10 \text{ Gd}_2\text{O}_3$		
S ₅	$0.85 \text{ Fe}_2\text{O}_3 + 0.15 \text{ Gd}_2\text{O}_3$		
S ₆	$0.80 \text{ Fe}_2\text{O}_3 + 0.20 \text{ Gd}_2\text{O}_3$		
S ₇	$0.70 \text{ Fe}_2 \text{O}_3 + 0.30 \text{ Gd}_2 \text{O}_3$		
S ₈	$0.68 \text{ Fe}_2 \text{O}_3 + 0.32 \text{ Gd}_2 \text{O}_3$		
S ₉	$0.50 \text{ Fe}_2\text{O}_3 + 0.50 \text{ Gd}_2\text{O}_3$		
S ₁₀	$0.30 \text{ Fe}_2\text{O}_3 + 0.70 \text{ Gd}_2\text{O}_3$		
S ₁₁	$0.10 \text{ Fe}_2 \text{O}_3 + 0.90 \text{ Gd}_2 \text{O}_3$		
S ₁₂	$\mathrm{Gd}_2\mathrm{O}_3$		

meter, proportional counter and graphite monochromator).

⁵⁷Fe Mössbauer spectra were recorded using a commercial Mössbauer spectrometer produced by Wissenschaftliche Elektronik GmbH. An Amersham ⁵⁷Co–Rh source was used. The standard absorbers, α -Fe, α -Fe₂O₃ and ⁵⁷Fe–Rh, were also used.

3. Results and discussion

The oxide phases found in our samples, α -Fe₂O₃, Gd₃Fe₅O₁₂, GdFeO₃ and Gd₂O₃, were identified using the data contained in the Powder Diffraction File, JCPDS, [23]. Crystallographic data for these phases are given in Table II, together with the data for analogous phases existing in the system Fe₂O₃-Eu₂O₃, studied previously [3].

The results of X-ray diffraction phase analysis of samples, prepared in the system Fe₂O₃-Gd₂O₃, are given in Table III. Characteristic parts of X-ray powder diffraction patterns (samples S_2 , S_4 , S_7 , S_9 and S_{10}) are shown in Fig. 1. The present results are similar to those obtained for the system Fe₂O₃-Eu₂O₃ [3]. In both systems the samples were prepared at the same final temperature of heating, 900 °C. The similarity between the results obtained for the systems Fe_2O_3 -Gd₂O₃ and Fe_2O_3 -Eu₂O₃ is obviously a consequence of similar ionic radii of Gd and Eu (0.094 nm for Gd^{3+} and 0.097 nm for Eu^{3+} ; the ionic radius of Fe^{3+} being 0.067 nm) and the same structural types of $Ln_3Fe_5O_{12}$, $LnFeO_3$ and Ln_2O_3 , Ln = Gd or Eu, as shown in Table II. The molar fractions of oxide phases present in the systems Fe₂O₃-Gd₂O₃ and Fe_2O_3 -Eu₂O₃, as a function of the Ln₂O₃ content, are shown in Fig. 2. These quantitative data were obtained by application of the doping method [25, 26].

The present results of X-ray diffraction analysis of the system Fe_2O_3 -Gd₂O₃ can be summarized as follows.

The molar fraction of α -Fe₂O₃ decreases continuously as the content of Gd increases. The fraction of the garnet-type ferrite, Gd₃Fe₅O₁₂, increases with the content of Gd, having a maximum at the Gd₂O₃ molar content of ~ 0.30–0.40 (samples S₇ and S₈) and then decreases with a further increase of the Gd content. Orthoferrite, GdFeO₃, appears already at the Gd₂O₃ molar content of 0.01 (sample S₁). Its molar

TABLE II Crystallographic data (at room	temperature) for phases existing	in the system Fe ₂ O ₃ -6	Gd ₂ O ₃ and Fe ₂ O ₃ -Eu ₂ O ₃
---	----------------------------------	---	---

JCPDS PDF [23] Card No.	Compound	Space group	Unit-cell parameters (nm)	
13–534	α-Fe ₂ O ₃	$\mathbf{R}\mathbf{\overline{3}}c$ (167)	Hexagonal axes: a = 0.50340, c = 1.3752	
13-327	$Gd_3Fe_5O_{12}$	Ia3d (230) [24]	a = 1.2470 [24]	
23-1069	$Eu_3Fe_5O_{12}$	Ia3d (230)	a = 1.2496	
15-196	GdFeO ₃	Pbnm (62)	a = 0.5346, b = 0.5616, c = 0.7668	
8-407	EuFeO ₃	Pbnm (62)	a = 0.5371, b = 0.5611, c = 0.7686	
12-797	Gd_2O_3	Ia3 (206)	a = 1.0813	
12-393	Eu ₂ O ₃	Ia3 (206)	a = 1.0869	

TABLE III X-ray diffraction phase analysis of samples in the system Fe₂O₃-Gd₂O₃

Starting composition Fe ₂ O ₃ :Gd ₂ O ₃	Phase composition as found by XRD (approximate molar fractions)			
(molar ratio)	α-Fe ₂ O ₃	$Gd_3Fe_5O_{12}$	GdFeO ₃	Gd_2O_3
Fe ₂ O ₃	1			
99:1	0.98		0.02	
97:3	0.92	0.01	0.07	
95:5	0.85	0.05	0.10	
90:10	0.70	0.18	0.12	
85:15	0.45	0.40	0.15	
80:20	0.30	0.65	0.05	
70:30	0.06	0.90	0.04	
68:32	0.06	0.90	0.04	
50:50		0.20	0.70	0.10
30:70		0.05	0.45	0.50
10:90		0.02	0.08	0.90
Gd_2O_3				1

Figure 1 Characteristic parts of X-ray diffraction powder patterns of several samples in the system $Fe_2O_3-Gd_2O_3$ (radiation: monochromatized CuK_a). (S₂ 3 mol % Gd_2O_3 , S₄ 10 mol % Gd_2O_3 , S₇ 30 mol % Gd_2O_3 , S₉ 50 mol % Gd_2O_3 , S₁₀ 70 mol % Gd_2O_3) ($\nabla \alpha$ -Fe₂O₃, $\blacksquare Gd_3Fe_5O_{12}$, $\nabla GdFeO_3$, $\square Gd_2O_3$)

Figure 2 Distribution of oxide phases (molar fractions) present in the systems (a) Fe_2O_3 - Eu_2O_3 and (b) Fe_2O_3 - Gd_2O_3 (Fig. 2b), as a function of the molar content of Ln_2O_3 .

fraction slowly increases with the Gd content, having a small maximum at ~ 0.15 (sample S_5) and a pronounced maximum at ~ 0.50 (sample S_9), i.e. at the starting molar ratio $Fe_2O_3:Gd_2O_3 = 1:1$. The fraction of GdFeO₃ decreases as the Gd content increases above 0.50. The phase Gd₂O₃ appears at the starting composition $Fe_2O_3:Gd_2O_3 = 1:1$ (sample S_9), and its fraction increases with the Gd content.

All oxide phases present in samples $Fe_2O_3-Ln_2O_3$, Ln = Gd or Eu, prepared at the final temperature of 900 °C, are well crystallized showing sharp X-ray diffraction lines, which are well resolved in the spectral components $K_{\alpha_1\alpha_2}$ at higher Bragg angles.

According to X-ray diffraction analysis the solid solutions were not formed in the system

TABLE IV Powder diffractometer data for $Gd_3Fe_5O_{12}$ (room temperature, radiation CuK_{α_1} , α -Fe₂O₃ as internal standard) $a = (1.2460 \pm 0.0008)$ nm, space group Ia3d (230)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
532 0.1835 0.1837 631 4 0.1795 0.1798 444 15 0.1725 0.1728 640 35	
0.18350.18376.3140.17950.17984.44150.17250.17286.4035	
0.17950.1798444150.17250.172864035	
0.1725 0.1728 640 35	
0.1695 0.1696 7.2.1 10	
633+	
0.1663 0.1665 642 38	
0.1580 0.1582 7.3.2 3	
651	
0.1559 0.1558 800 12	
0.1392 0.1392 840 9	
0.1359 0.1359 842 20	
0.1343 0.1344 921 2	
761 +	
0.1328 0.1328 664 7	
0.1285 0.1285 932 2	
763	
0.1222 0.1222 10, 2, 0 3	
862	
0.1187 0.1188 10, 3, 1 4	
952+	
0.1157 0.1157 10, 4, 0 15	
864	
0.1139 0.1137 10, 4, 2 7	
0.1110 0.1110 11, 2, 1 3	
10, 5, 1 +	
0.1102 0.1101 880 10	
0.1025 0.1024 12, 2, 0 5	
0.1010 0.1011 12, 2, 2 8	
10, 6, 4	
0.09670 0.09671 11, 6, 3 2	
992+ 2	
0.09395 0.09392 12, 4, 4 5	
0.09290 0.09287 12, 6, 0 15	
10, 8, 4	
0.09237 0.09236 13, 3, 2 2	
11, 6, 5 +	
0.09185 0.09186 12, 6, 2 5	
0.08995 0.08992 888 5	

+ Additional indices are possible.

 $Fe_2O_3-Gd_2O_3$, as it was also concluded for the system $Fe_2O_3-Eu_2O_3$ [3]. The exception might be the far Gd_2O_3 -rich side (sample S_{11}). There is, however, no evidence (based on X-ray diffraction), which would support this assumption, except for the estimated molar fractions present in the sample S_{11} (Table III).

In the present work the powder diffraction data for $Gd_3Fe_5O_{12}$ contained in Reference 23 were improved. Accurate unit-cell parameters and interplanar

Figure 3 57 Fe Mössbauer spectra of samples S₁ to S₄ recorded at room temperature.

spacings were obtained using α -Fe₂O₃, already present in our samples, as internal standard. The new crystallographic data are listed in Table IV.

Figs 3 and 4 show the ⁵⁷Fe Mössbauer spectra of samples S_1 to S_7 , S_9 and S_{10} recorded at room temperature. The hyperfine magnetic field (HMF) of α -Fe₂O₃ component for samples S_1 to S_4 has the same value (517 ± 1 kOe), as for the standard α -Fe₂O₃ sample, S_0 . For sample S_5 the HMF value of α -Fe₂O₃ component is slightly decreased to 515 ± 2 kOe. This result indicates that there is practically no Gd³⁺ dissolution into the α -Fe₂O₃ structure at given experimental conditions, which is in agreement with the Xray diffraction results. Generally, it is known that dissolution of metal ions into the α -Fe₂O₃ structure decreases significantly the value of hyperfine magnetic field at ⁵⁷Fe nucleus.

The ⁵⁷Fe Mössbauer spectrum of sample S_7 indicates that $Gd_3Fe_5O_{12}$ is the dominant component in this sample. With a further increase of Gd content the spectral lines corresponding to GdFeO₃ start to be dominant. In sample S_{10} the HMF value of 500 ± 2 kOe was measured, which is in agreement with HMF value for GdFeO₃ (502 kOe at 296 K) obtained by Eibshütz *et al.* [7].

Figure 4 57 Fe Mössbauer spectra of samples S₅ to S₇, S₉ and S₁₀, recorded at room temperature.

References

- 1. S. MUSIĆ, S. POPOVIĆ and M. RISTIĆ, J. Mater. Sci. 24 (1989) 2722.
- 2. M. RISTIĆ, S. POPOVIĆ, M. TONKOVIĆ and S. MUSIĆ, *ibid.* in press.

- M. RISTIĆ, S. POPOVIĆ and S. MUSIĆ, J. Mater. Sci. Lett. 9 (1990) 872.
- S. MUSIĆ, S. POPOVIĆ, M. METIKOŠ-HUKOVIĆ and V GVOZDIĆ, *ibid.* 10 (1991) 197.
- M. EIBSHÜTZ, G. GORODETSKY, S. SHTRIKMAN and D. TREVES, J. Appl. Phys. 35 (1964) 1071.
- 6. D. TREVES, *ibid.* **36** (1965) 1033.
- 7. M. EIBSHÜTZ, S. SHTRIKMAN and D. TREVES, *Phys. Rev.* **156** (1967) 562.
- J. M. D. COEY, G. A. SAWATZKY and A. H. MORRISH, Phys. Rev. 184 (1969) 334.
- 9. L. M. LEVINSON, M. LUBAN and S. SHTRIKMAN, *ibid.* 177 (1969) 864.
- A. SZTANISLÁV, E. STERK, L. FETTER, M. FARKAS-JAHNKE and J. LÁBÁR, J. Magn. Magn. Mater. 41 (1984) 75.
- 11. M. EIBSHÜTZ and M. E. LINES, Phys. Rev. B 25 (1982) 4256.
- 12. M. E. LINES and M. EIBSHÜTZ, *ibid.* 25 (1982) 6042.
- M. EIBSHÜTZ and M. E. LINES, *ibid.* 26 (1982) 2288.
 V. N. BELOGUROV and V. A. BILINKIN, *Phys. Status Solidi a*, 63 (1981) 45.
- 15. C. MICHALK and W. THIEL, ibid. 90 (1985) 325.
- 16. A. P. DODOKIN and I. S. LYUBUTIN, J. Physique 40 (1979) C2-342.
- 17. I. S. LYUBUTIN, B. V. MILL, R. I. CHALABOV and A. V. BUTASHIN, J. Phys. Chem. Solids 46 (1985) 363.
- Z. M. STADNIK and B. F. OTTERLOO, J. Solid State Chem. 48 (1983) 133.
- 19. Z. M. STADNIK, J. Magn. Magn. Mater. 37 (1983) 138.
- 20. K. SANEYOSHI, T. TORIYAMA, J. ITOH, K. HISATAKE and S. CHIKAZUMI, *ibid.* **31–34** (1983) 705.
- 21. J. F. DILLON, Jr., *ibid.* 84 (1990) 213.
- 22. N. KOSHIZUKA and T. OKUDA, *IEEE Trans. J. Magn.* **TJM-1** (1985) 1044.
- 23. International Centre for Diffraction Data, Joint Committee on Powder Diffraction Standards, 1601 Park Line, Swarthmore, PA 19081, USA.
- 24. J. E. WEIDENBORNER, Acta Crystallogr. 14 (1961) 1051.
- 25. S. POPOVIĆ and B. GRŽETA-PLENKOVIĆ, J. Appl. Crystallogr. 12 (1979) 205.
- 26. S. POPOVIĆ, B. GRŽETA-PLENKOVIĆ and T. BABIĆ-ŽUNIĆ, *ibid.* **16** (1983) 505.

Received 19 October 1990 and accepted 25 March 1991